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a b s t r a c t

Tris-oxazole macrolactone 2, a key intermediate of mycalolide B (1), which has 13 stereogenic centres,
was synthesized through the use of ring-closing metathesis (RCM). The E/Z ratio of the RCM product 2
was reversed by the use of CH2Cl2 and toluene, whereas a cross-metathesis reaction yielded the C1–
C35 long-chain compound 19 in a highly E-selective manner. Thus, the loss of flexibility in aliphatic car-
bon chains and the steric hinderance of b- and c-substituents of the C20 olefin in the precursor 11 may
affect the stereoselectivity in RCM reactions.

� 2010 Elsevier Ltd. All rights reserved.
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Mycalolide B (1) is a cytotoxic and antifungal macrolide isolated
from the marine sponge Mycale sp. It bears a unique tris-oxazole
structure and has 13 stereogenic centers (Fig. 1).1 This compound
also inhibits actomyosin Mg2+–ATPase and shows potent actin-
depolymerizing activity by sequestering G-actin and forming a
1:1 complex.2 Mycalolides can be divided into two characteristic
parts: the C1–C24 macrolactone and the C25–C35 side-chain moi-
eties. Studies of the structure–activity relationship3 and photo-
affinity labeling experiments4 have established that the side-chain
part of 1 is critically important for its ability to bind to and depo-
lymerize actin. Several tris-oxazole macrolides closely related to
mycalolides have been isolated, such as ulapualides,5 halichondra-
mides,6 jaspisamides,7 and kabiramides;8 all of which exhibit po-
tent actin-depolymerizing properties. These agents may be useful
for the development of novel pharmacological tools for analyzing
actin-mediated cell functions, such as muscle contraction, cell
motility, and cytokinesis. Furthermore, it is noteworthy that aplyr-
onine A, which has an actin-binding side-chain moiety similar to
mycalolides, exhibits potent antitumor activity in vivo against
P388 leukemia and several cancers.9,10 Thus, mycalolides and re-
lated actin-targeting natural products have great potential as pre-
clinical candidates for use in cancer chemotherapy.

Due to their extraordinary structures and important biological
activities, several synthetic studies on tris-oxazole-containing
macrolides have been reported.11 Recently, total syntheses of
mycalolide A12 and ulapualide A13 have been accomplished, in
ll rights reserved.
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were used to construct macrocycles. Subsequent studies have
shown that olefin metathesis is a useful method for connecting
the C19–C20 double bonds in mycalolide analogs.14 Here we de-
scribe the synthesis of tris-oxazole macrolactone 2, a key synthetic
intermediate of mycalolides, through the use of ring-closing
metathesis (RCM). We expected that the convergent assembly of
three fragments via Ni/Cr-mediated Nozaki–Hiyama–Kishi cou-
pling15 at C6–C7, esterification, and RCM at the C19–C20 olefin
could efficiently afford 2.

The synthesis started with removal of the Boc and acetonide
groups of the previously reported oxazole (�)-314 under acidic
conditions, and subsequent condensation with 2-chloroxazole-4-
carboxylic acid16 afforded amide 4 (77%, two steps) (Scheme 1).
Due to the considerable instability of the 2-vinyloxazole moieties
under basic and dehydration conditions, we planned to introduce
the vinyl group into the oxazole ring after construction of the
tris-oxazole structure. Dehydrating cyclization of 4 by diethylami-
nosulfur trifluoride (DAST)17 gave an oxazoline intermediate (85%),
which was oxidized with a combination of bromotrichloromethane
and 1,8-diazabicycloundec-7-ene (DBU)18 at room temperature to
give tris-oxazole 5 (98% based on recovered starting material).19

We found that acetonitrile is a better solvent than the conventional
CH2Cl2 in this reaction. Catalytic dihydroxylation of 5 with OsO4–
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Scheme 1. Synthesis of the RCM precursor 11. Reagents and conditions: (a) 3 M
HCl, EtOAc, rt; (b) 2-chlorooxazole-4-carboxylic acid, EDCI�HCl, HOBt, Et3N, CH2Cl2,
0 �C to rt, 77% in two steps; (c) DAST, CH2Cl2, �78 to 0 �C, 85%; (d) DBU, BrCCl3,
MeCN, rt, 54% (98% br s m); (e) OsO4, NMO, THF–tBuOH–H2O, rt; (f) tri-n-
butylvinyltin, PdCl2(PPh3)2, 1,4-dioxane, reflux; (g) NaIO4, EtOH–H2O, rt, 73% in
three steps; (h) 7, CrCl2–NiCl2, THF–DMF, rt; (i) DMP, pyridine, CH2Cl2, rt, 71% in
two steps; (j) TFA, CH2Cl2, 0 �C, 90%; (k) TBAF, THF, 40 �C, 97%; (l) 10, MNBA, Et3N,
DMAP, CH2Cl2, rt, 55%.
NMO and Migita–Stille coupling with tri-n-butylvinyltin furnished
a vinyloxazole intermediate, and this was transformed into alde-
hyde 6 via oxidative cleavage of the 1,2-diol with NaIO4 (73%, three
steps).

Fragment coupling between 6 and vinyl iodide 712 by a Ni/Cr-
mediated coupling reaction was followed by oxidation of the C7
allylic alcohol with Dess–Martin periodinane (DMP)20 to afford a
ketone (71%, two steps), the tert-butyl group of which was re-
moved to give carboxylic acid 8 (90%). Removal of the tert-butyldi-
methylsilyl (TBS) group in 914,3b,21 by tetra-n-butylammonium
fluoride (TBAF) gave C20–C35 fragment 10 (97%), which was con-
densed with 8 by the Shiina procedure22 to afford the RCM precur-
sor 11 in 55% yield.

With the key intermediate 11 in hand, RCM reactions were exam-
ined (Table 1). First, treatment of 11 with 30 mol % of 2nd-generation
Grubbs catalyst (12)23 in degassed refluxing toluene led to the
decomposition of the starting material and gave a complex mixture
(entry 1). We assumed that the low reactivity of 11 toward RCM reac-
tions would be due to the electron-deficient C19 olefin. To overcome
this problem, a more thermally-stable and highly-active catalyst
was considered. Treatment of 11 with 30 mol % of 2nd-generation
Hoveyda–Grubbs catalyst (13)24 in refluxing CH2Cl2 (0.8 mM)
yielded tris-oxazole lactone 2 as a separable 2:1 mixture of stereo-
isomers in 30% yield (entry 2).25–27 With the use of toluene as a sol-
vent (0.9 mM), the yield of 2 was improved to 76%, but the E/Z-
product ratio was changed to 1:1.2 (entry 3).

For comparison, we also used a cross-metathesis reaction
(Scheme 2). Acidic treatment of cyanide 15 in aqueous MeOH,
which was prepared from (S)-epichlorohydrin (14),28 and protec-
tion of the hydroxyl group gave 16 (60% in two steps). Ozonolysis
of the terminal olefin (80%) and Takai olefination29 gave vinyl io-
dide 17 (66%, E/Z = 11:1). Nozaki–Hiyama–Kishi coupling between
compounds 6 and 17 gave an allylic alcohol (87%), which was oxi-
dized with DMP to afford the C1–C19 ketone 18 in 84% yield. In
contrast to the RCM reactions, treatment of the C1–C19 segment
18 (1.2 equiv) and the C20–C35 segment 9 with 50 mol % of cata-
lyst 13 in refluxing CH2Cl2 (7 mM for 9) for 25 h yielded the C1–
C35 long-chain compound 19 in a highly E-selective manner
(66%, E/Z = 5:1).25,30–32

Our work demonstrated that the RCM reaction of 11 proceeded
with low stereoselectivity, unlike the cross-metathesis reaction of
Table 1
Ring-closing metathesis of 11
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a S.m. was decomposed and not recovered.
b S.m. was recovered (50%).
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Scheme 2. Cross-metathesis reaction. Reagents and conditions: (a) concd H2SO4,
MeOH–H2O, reflux; (b) TBDPSCl, imidazole, DMF, rt, 60% in two steps; (c) O3,
CH2Cl2, �78 �C, then Me2S, �78 �C to rt, 80%; (d) CrCl2, CHI3, 1,4-dioxane–THF, rt,
65%; (e) 17, CrCl2–NiCl2, THF–DMF, rt, 87%; (f) DMP, pyridine, CH2Cl2, rt, 84%; (g) 9,
13 (50 mol %), CH2Cl2, reflux, 55% with 11% of 19Z-isomer.
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18. The E/Z ratios did not significantly change during the course of
the metathesis reactions, and thus the formation of C@C bonds in 2
and 19 would take place under kinetic control. In the ruthenocyc-
lobutane intermediate for the desired 19E-isomer of 2, the oxazole
rings and the C21–C35 alkyl chain are located in an anti-orienta-
tion. Due to the rigidness of the tris-oxazole and a,b-unsaturated
ketone moieties, the anti-ruthenocyclobutane intermediate would
be more strained than the syn-intermediate, which may affect the
stereoselectivity in RCM reactions.

In conclusion, we achieved the synthesis of tris-oxazole macro-
lactone 2 through the use of RCM reactions as a key step, which in-
cludes all of the 13 stereogenic centers and the whole carbon
framework of mycalolide B (1). Also, this key intermediate pos-
sesses a common framework for mycalolides and related actin-
depolymerizing tris-oxazole macrolides. Studies on the total syn-
thesis of mycalolide B (1) as well as on the stereoselectivity of
RCM reactions, especially solvent effects, are currently underway.
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catalyst 13 in toluene at 40 �C also preferentially yielded E-isomer, but the
selectivity was lower than in the case of CH2Cl2 (E/Z = 2.0–1.5:1). Thus, the
difference of solvent (CH2Cl2 and toluene) rather than reaction temperature
may affect the stereoselectivity in the RCM reactions of 11.
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